[1]于成龙.基于PCA的特征选择算法[J].计算机技术与发展,2011,(04):123-125.
 YU Cheng-long.Features Selection Algorithm Based on PCA[J].,2011,(04):123-125.
点击复制

基于PCA的特征选择算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年04期
页码:
123-125
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Features Selection Algorithm Based on PCA
文章编号:
1673-629X(2011)04-0123-03
作者:
于成龙
南京邮电大学计算机学院
Author(s):
YU Cheng-long
College of Computer,Nanjing University of Posts and Telecommunications
关键词:
人脸识别PCA特征脸特征选择
Keywords:
face recognition PCA eigenface feature selection
分类号:
TP301.6
文献标志码:
A
摘要:
在人脸识别的某些应用中,最好能够找到原始特征的关键子集,减少不必要的特征计算和资源耗费,而不是得到所有原始特征的映射。主成分分析法(Principal Components Analysis,PCA)是目前比较常用的人脸识别算法,PCA将人脸图像映射到能很好地表征训练图像集的特征脸空间中,但是基于PCA的人脸识别的缺陷在于原始空间所有的特征都映射到了低维特征空间中,是基于最佳描述性特征子集。提出了一种新的基于PCA的特征选择方法,将特征选择与特征抽取相结合,对特征脸空间再进行特征选择,选择人脸原始特征集中最关键的特征,并将其应用在基于PCA的人脸识别中
Abstract:
In some applications of face recognition,it might be more desirable to pick a subset of the original features than to find a mapping that uses all of the original features.The benefits of finding this subset of features lie in cost reduced computations and thus lower cost of sensors.Principal components analysis(PCA) is widely used in face feature extraction and recognition.The facial images are projected onto eigenfaces that best define the variation of the known test images.However,the PCA-based face recognition has the disadvantage that,on the basis of an optimal descriptive feature subset,measurements from all the original features are used in the projection to the lower dimensional space.Propose a new method for dimensionality reduction of a feature set by choosing a subset of original features that contains most of the essential information.This method,based on PCA,combines together feature selection and feature extraction.The proposed method has been successfully applied in choosing principal features in PCA-based face detection and recognition

相似文献/References:

[1]徐钊,吴光敏,覃世欢.基于AccelDSP的LBP算法在人脸识别中的应用[J].计算机技术与发展,2014,24(01):51.
 XU Zhao,WU Guang-min,QIN Shi-huan.Application of LBP Algorithm Based on AccelDSP in Face Recognition[J].,2014,24(04):51.
[2]时书剑 马燕.基于Gabor滤波和KPCA的人脸识别方法[J].计算机技术与发展,2010,(04):51.
 SHI Shu-jian,MA Yan.Face Recognition Based on Gabor Filters and Kernel Principal Component Analysis[J].,2010,(04):51.
[3]袁健 姚明海.基于简化局部二元法的人脸特征提取[J].计算机技术与发展,2009,(06):84.
 YUAN Jian,YAO Ming-hai.Facial Feature Extraction Based on Simplified Local Binary Patterns[J].,2009,(04):84.
[4]李伟.人脸识别算法在智能手机上的实现[J].计算机技术与发展,2008,(01):161.
 LI Wei.Implementation of Face Identification in Intelligent Mobile Telephone[J].,2008,(04):161.
[5]黄国宏 刘刚.一种新的基于Fisher准则的线性特征提取方法[J].计算机技术与发展,2008,(05):227.
 HUANG Guo-hong,LIU Gang.A New Linear Feature Extraction Method Based on Fisher Criterion[J].,2008,(04):227.
[6]孙晓玲 侯德文 储凡静.人脸识别中的眼睛定位方法[J].计算机技术与发展,2008,(10):46.
 SUN Xiao-ling,HOU De-wen,CHU Fan-jing.Eye Location in Face Recogniton[J].,2008,(04):46.
[7]王静 谭同德.基于梯度和模板二次匹配的人眼定位[J].计算机技术与发展,2007,(10):144.
 WANG Jing,TAN Tong-de.A Method to Eyes Location Based on Step- Direction and Templet - Matching[J].,2007,(04):144.
[8]高宏娟 潘晨.基于非负矩阵分解的人脸识别算法的改进[J].计算机技术与发展,2007,(11):63.
 GAO Hong-juan,PAN Chen.Improved Face Recognition Algorithm Based on Non- Negative Matrix Factorization[J].,2007,(04):63.
[9]徐勇 张海 周森鑫 王辉.基于统计学习理论的人脸识别方法研究[J].计算机技术与发展,2007,(11):118.
 XU Yong,ZHANG Hai,ZHOU Sen-xin,et al.Research on Face Recognition Based on Statistical Learning Theory[J].,2007,(04):118.
[10]马驰 阮秋琦.基于离散微粒群优化算法的SVM参数选择[J].计算机技术与发展,2007,(12):20.
 MA Chi,RUAN Qiu-qi.Parameter Selection for SVM Based on Discrete PSO[J].,2007,(04):20.

备注/Memo

备注/Memo:
江苏省自然科学基金(08KJB520008); 南京邮电大学人才引进启动基金(NY207137 NY207148)于成龙(1984-),男,硕士研究生,研究方向为模式识别与图像处理
更新日期/Last Update: 1900-01-01