[1]白茹意 周明全 邓擎琼.基于ICP和CPD的颅骨自动配准算法[J].计算机技术与发展,2011,(02):120-122.
 BAI Ru-yi,ZHOU Ming-quan,DENG Qing-qiong.Algorithm for Automated Skull Registration Based on ICP and CPD[J].,2011,(02):120-122.
点击复制

基于ICP和CPD的颅骨自动配准算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年02期
页码:
120-122
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Algorithm for Automated Skull Registration Based on ICP and CPD
文章编号:
1673-629X(2011)02-0120-03
作者:
白茹意 周明全 邓擎琼
北京师范大学信息科学与技术学院
Author(s):
BAI Ru-yiZHOU Ming-quanDENG Qing-qiong
College of Information Science and Technology,Beijing Normal University
关键词:
配准特征点CrestlinesCPD
Keywords:
registration landmark Crest lines CPD
分类号:
TP301.6
文献标志码:
A
摘要:
颅骨配准是计算机辅助的三维颅面复原技术的重要研究内容之一。颅骨配准的准确与否会直接影响到将来颅面复原的准确性。为此,提出一种新的3D颅骨自动配准算法。该算法考虑到颅骨模型的特殊结构与实现的简便性,首先自动提取颅骨不光滑区域的脊线(Crest lines)以及光滑区域的顶点作为特征点,然后利用迭代最近点(ICP)算法进行粗配准,在此基础上,再采用CPD(Coherent Point Drift)算法对颅骨进行精确配准。实验结果表明,该算法能有效提高颅骨配准的准确性并对缺损颅骨具有一定的鲁棒性
Abstract:
Skull registration is important in computer-aided three-dimensional craniofacial reconstruction.The accuracy of the skull registration will directly affect the validity of the reconstruction.In the paper,an automatic method for 3D skull registration is proposed.It consists of three steps.First,some points on the crest lines and the smooth surfaces of the skulls are defined as landmarks in consideration of the special structure of skulls.Then,ICP algorithm is applied to roughly align the two skulls.Finally,a fine registration based on the CPD algorithm is implemented.Experimental results demonstrate that the algorithm can effectively improve the accuracy of the skull registration and is robust in the presence of the partial skull

相似文献/References:

[1]杨丹 孙向南 张小洪.一种分层渐进匹配的鲁棒估计算法[J].计算机技术与发展,2009,(06):36.
 YANG Dan,SUN Xiang-nan,ZHANG Xiao-hong.A Robust Estimating Algorithm Based on Layered Progressive Matching[J].,2009,(02):36.
[2]张霞 葛芦生.图像中心点预标定方法研究与应用[J].计算机技术与发展,2007,(03):44.
 ZHANG Xia,GE Lu-sheng.Application and Research on Pre - Calibration of Image Center[J].,2007,(02):44.
[3]徐海峰,秦茂玲,刘辉.一种基于特征点分割的三维模型检索方法[J].计算机技术与发展,2013,(01):71.
 XU Hai-feng,QIN Mao-ling,LIU Hui.3D Model Retrieval Method Based on Segmentation of Feature Point[J].,2013,(02):71.
[4]李水平,吴雨.一种融合纹理的三维图像重建快速实现方法[J].计算机技术与发展,2014,24(05):138.
 LI Shui-ping,WU Yu.A Fast Implementation Method of Reconstruction for 3 D Image Combined Texture[J].,2014,24(02):138.
[5]沈玲[],王年[]. 基于图的谱系数夹角的特征点匹配[J].计算机技术与发展,2015,25(12):68.
 SHEN Ling[],WANG Nian[]. Feature Points Matching Based on Angle between Spectral Coefficient of Images[J].,2015,25(02):68.
[6]章文洁[][],黄旻[],张桂峰[]. 滤光片多光谱成像中运动目标场景误配准修正[J].计算机技术与发展,2016,26(01):18.
 ZHANG Wen-jie[][],HUANG Min[],ZHANG Gui-feng[]. Misregistration Correction for Moving Object Scene in Filter-type Multispectral Imaging[J].,2016,26(02):18.
[7]李炀,翟社平. 改进的SIFT图像匹配算法[J].计算机技术与发展,2016,26(11):58.
 LI Yang,ZHAI She-ping. Improved SIFT Image Matching Algorithm[J].,2016,26(02):58.
[8]贾琪,王晓丹,周来恩,等. 一种改进的特征点方向分配算法[J].计算机技术与发展,2017,27(10):6.
 JIA Qi,WANG Xiao-dan,ZHOU Lai-en,et al. An Improved Algorithm for Assigning Orientations to Feature Points[J].,2017,27(02):6.
[9]刘保安.ICP 算法在文物三维重建中的应用[J].计算机技术与发展,2020,30(01):217.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 039]
 LIU Bao-an.Application of ICP Algorithm in Three-dimensional Reconstruction of Cultural Relics[J].,2020,30(02):217.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 039]
[10]陈思吉,王晓红*,葛义攀,等.图像边缘提取算法在第三次土地调查中的应用[J].计算机技术与发展,2020,30(10):161.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 029]
 CHEN Si-ji,WANG Xiao-hong*,GE Yi-pan,et al.Application of Image Edge Extraction Algorithm in Third National Land Survey[J].,2020,30(02):161.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 029]

备注/Memo

备注/Memo:
国家自然科学基金重点项目(60736008); 国家“863”高技术研究发展计划项目基金(2008AA01Z301); 北京市自然科学基金重点项目(4081002)白茹意(1987-),女,山西榆社人,硕士研究生,研究方向为计算机图形学、虚拟现实与可视化;周明全,博士生导师,教授,研究方向为计算机图形学、数字图像处理、科学计算可视化
更新日期/Last Update: 1900-01-01