[1]张莉 唐立文.基于四叉树的海量空间数据无缝组织研究[J].计算机技术与发展,2011,(01):77-80.
 ZHANG li,TANG Li-wen.Study of Organizing Seamless Great Capacity Spatial Data Based on Quadtree[J].,2011,(01):77-80.
点击复制

基于四叉树的海量空间数据无缝组织研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年01期
页码:
77-80
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Study of Organizing Seamless Great Capacity Spatial Data Based on Quadtree
文章编号:
1673-629X(2011)01-0077-04
作者:
张莉1 唐立文2
[1]中广电广播电影电视设计研究院[2]装备指挥技术学院试验指挥系
Author(s):
ZHANG li TANG Li-wen
[1]Radio, Film and Television Design and Research Institute[2]Department of Testing and Command, Academy of Equipment Command & Technology
关键词:
数字地球海量数据无缝组织四叉树
Keywords:
digital earth great capacity data seamless organization quadtree
分类号:
TP311
文献标志码:
A
摘要:
随着数字地球相关技术的发展,海量数据逐渐成为在数字地球研究中的一个最根本的特征,主要体现在数据种类多、数据量大,访问速度不容易提高。由于原始数据的表达与组织不同,也导致了数据出现不同的缝隙。介绍了数字地球中海量数据的特点,空间数据缝隙的产生,在此基础上,探讨了基于全球四叉树的组织方式,阐述了无缝拼接的方法,并对线和多边形数据进行无缝组织和处理,以使地理数据库中的空间数据在逻辑上达到无缝状态,成为一个整体
Abstract:
Great capacity data has become one of the important characteristics to the study of Digital Earth (DE) with the development of the corresponding techniques. It has all kinds of data, great capacity, slow access speed. Because of the expression and organization of the data, seam accrues. The paper introduced the great capacity characteristics in DE, the birth of seam. And in this way, discussed the structure of global quadtree, studied the methods of seamless joining, organized and handled the spatial data of line and polygon. Thus, the study makes the spatial database become seamless and unitary in logical

相似文献/References:

[1]夏奇思 王汝传.基于属性约简的粗糙集海量数据分割算法研究[J].计算机技术与发展,2010,(04):5.
 XIA Qi-si,WANG Ru-chuan.Mass Data Partition for Rough Set on Attribute Reduction Algorithm[J].,2010,(01):5.
[2]宫中樑 唐杰 武港山.基于预计算切片序列的动态体绘制技术[J].计算机技术与发展,2010,(08):5.
 GONG Zhong-liang,TANG Jie,WU Gang-shan.A Precomputed Slicing Based Volume Rendering Technique[J].,2010,(01):5.
[3]张辉 赵郁亮 徐江 孙伟华.基于Oracle数据库海量数据的查询优化研究[J].计算机技术与发展,2012,(02):165.
 ZHANG Hui,ZHAO Yu-liang,XU Jiang,et al.Query Optimization Research on Mass of Data Based on Oracle Database[J].,2012,(01):165.
[4]贺瑶,王文庆,薛飞.基于云计算的海量数据挖掘研究[J].计算机技术与发展,2013,(02):69.
[5]江雨燕,李平.基于PFP-Growth算法的海量频繁项集挖掘[J].计算机技术与发展,2013,(09):63.
 JIANG Yu-yan,LI Ping.Mining Massive Frequent Items Based on PFP-Growth Algorithm[J].,2013,(01):63.
[6]梁宗保,胡怡然,张凯.桥梁健康监测信息的数据驱动处理方法研究[J].计算机技术与发展,2013,(10):258.
 LIANG Zong-bao[],HU Yi-ran[],ZHANG Kai[].Research of Data Drive Processing Method of Bridge Health Monitoring Information[J].,2013,(01):258.
[7]王添,姜麟,米允龙. 海量数据下不完备信息系统的知识约简算法[J].计算机技术与发展,2015,25(01):137.
 WANG Tian,JIANG Lin,MI Yun-long. Knowledge Reduction Algorithms of Incomplete Information System in Massive Datasets[J].,2015,25(01):137.
[8]徐辉,王宁章,雷琳琳. 一种海量中文地址转化与切割的方法研究[J].计算机技术与发展,2015,25(11):6.
 XU Hui,WANG Ning-zhang,LEI Lin-lin. Research on a Massive Chinese Address Conversion and Cutting Method[J].,2015,25(01):6.
[9]杨伟超,马增军,耿卫. 基于Hubble.net的仓储系统设计与实现[J].计算机技术与发展,2017,27(10):181.
 YANG Wei-chao,MA Zeng-jun,GENG Wei. Design and Implementation of Massive Data Storage Service System Based on Hubble. net[J].,2017,27(01):181.
[10]王晓妮,段群,韩建刚.基于云计算的数据挖掘系统设计与实现[J].计算机技术与发展,2019,29(03):178.[doi:10.3969/ j. issn.1673-629X.2019.03.037]
 WANG Xiao-ni,DUAN Qun,HAN Jian-gang.Design and Implementation of Data Mining System Based on Cloud Computing[J].,2019,29(01):178.[doi:10.3969/ j. issn.1673-629X.2019.03.037]
[11]王柏 胡谷雨 罗健欣.数字地球系统中海量数据存储与传输方案研究[J].计算机技术与发展,2012,(03):81.
 WANG Bai,HU Gu-yu,LUO Jian-xin.Research of Massive Data Storage and Transmission for Digital Earth System[J].,2012,(01):81.

备注/Memo

备注/Memo:
财政部重大专项课题(40602001)张莉(1974-),女,工程师,研究方向为地图综合、信息融合、广播电视工程等
更新日期/Last Update: 1900-01-01