[1]杨德璋 李雷 申方成.快速多规则约束关联算法的入侵检测研究[J].计算机技术与发展,2010,(12):173-176.
 YANG De-zhang,LI Lei,SHEN Fang-cheng.Intrusion Detection Technology Research Based on Fast Multi-association Mining Algorithm[J].,2010,(12):173-176.
点击复制

快速多规则约束关联算法的入侵检测研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2010年12期
页码:
173-176
栏目:
安全与防范
出版日期:
1900-01-01

文章信息/Info

Title:
Intrusion Detection Technology Research Based on Fast Multi-association Mining Algorithm
文章编号:
1673-629X(2010)12-0173-04
作者:
杨德璋1 李雷1 申方成2
[1]南京邮电大学自动化学院[2]南京邮电大学数理学院
Author(s):
YANG De-zhangLI LeiSHEN Fang-cheng
[1]School of Automation,Nanjing University of Posts and Telecommunications[2]School of Mathematics & Physics,Nanjing University of Posts and Telecommunications
关键词:
入侵检测数据挖掘关联规则频繁项集模糊C均值聚类算法规则约束
Keywords:
intrusion detection data mining association rules frequent itemsets fuzzy C-means clustering algorithm rule constraint
分类号:
TP393.08
文献标志码:
A
摘要:
入侵特征值识别和发现算法是误用入侵检测中的关键技术。针对数据挖掘经典的Apriori算法中多次扫描事务数据库而产生很大I/O负载和可能产生庞大的无用候选集的问题,提出了一种基于快速多规则约束Apriori算法。算法实时更新了入侵检测系统的规则库,提高了整个系统的检测性能,有效降低虚警率和误报率。同时考虑到强规则事件并不一定是有趣事件的问题,算法加入递减支持度约束。试验结果显示,该算法相比Apriori算法在系统的入侵检测效率上有很好的改善
Abstract:
Invasion eigenvalue and discovery algorithm are the key technologies to misuse intrusion detection technology.To solve Apriori algorithm's two problems: one is that scanning the transaction database repeatedly produce large I/O load;the other is that it may have unwanted large candidate sets.Presents a fast multi-constrained Apriori algorithm,which can real-time update of intrusion detection system rule-base,improve detection performance of the entire system,effectively reduce the false alarm rate and false alarm rate.Considering that the current new attacks are derivatives of old existing attacks,many of them have same characteristics of sub-strings,and not every events with strong rules are fun events,the new algorithm adds the decreasing support constraints.Experiment results indicate that the proposed method is efficient

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(12):120.
[2]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(12):235.
[3]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(12):114.
[4]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(12):229.
[5]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(12):93.
[6]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(12):105.
[7]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(12):84.
[8]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(12):109.
[9]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(12):113.
[10]孙名松 邸明星 王湛昱.多决策树算法在P2P网络流量检测中的应用[J].计算机技术与发展,2010,(06):126.
 SUN Ming-song,DI Ming-xing,WANG Zhan-yu.Application of Decision Tree Algorithm in Traffic Detection of P2P Network[J].,2010,(12):126.
[11]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(12):143.
[12]李睿 肖维民.基于孤立点挖掘的异常检测研究[J].计算机技术与发展,2009,(06):168.
 LI Rui,XIAO Wei-min.Research on Anomaly Intrusion Detection Based on Outlier Mining[J].,2009,(12):168.
[13]程玉青 梅登华 陈龙飞.基于数据挖掘的入侵检测系统模型[J].计算机技术与发展,2009,(12):123.
 CHENG Yu-qing,MEI Deng-hua,CHEN Long-fei.A Model of Intrusion Detection System Based on Data Mining[J].,2009,(12):123.
[14]罗军生 李永忠 杜晓.基于模糊C-均值聚类算法的入侵检测[J].计算机技术与发展,2008,(01):178.
 LUO Jun-sheng,LI Yong-zhong,DU Xiao.Intrusion Detection Based on Fuzzy C- Means Clustering Algorithm[J].,2008,(12):178.
[15]何利 谢中.一种MANET入侵检测系统模型研究[J].计算机技术与发展,2008,(07):135.
 HE Li,XIE Zhong.Research of One Intrusion Detection Model for Mobile Ad- hoc Networks[J].,2008,(12):135.
[16]叶和平 尚敏.一种面向入侵检测的数据挖掘算法研究[J].计算机技术与发展,2008,(11):149.
 YE He-ping,SHANG Min.Study on an Intrusion Detection Oriented Data Mining Algorithm[J].,2008,(12):149.
[17]黄烟波 胡波 周忠华.簇技术在移动Adhoc网络入侵检测中的应用研究[J].计算机技术与发展,2007,(04):113.
 HUANG Yan-bo,HU Bo,ZHOU Zhong-hua.Application and Research of Cluster Technology in Intrusion Detection of Mobile Ad hoc Networks[J].,2007,(12):113.
[18]吴玉 李岚 朱明.基于数据挖掘的入侵检测行为数据辨析[J].计算机技术与发展,2007,(07):139.
 WU Yu,LI Lan,ZHU Ming.Behavioral Data Forensics in Intrusion Detection Based on Data Mining[J].,2007,(12):139.
[19]王亚楠 刘方爱.基于数据挖掘和协议分析的可扩充IDS架构[J].计算机技术与发展,2006,(01):223.
 WANG Ya-nan,LIU Fang-ai.An Extensible Framework of Intrusion Detection System Based on Data Mining and Protocol Analysis[J].,2006,(12):223.
[20]李守国 李俊.基于数据挖掘的入侵检测系统设计[J].计算机技术与发展,2006,(04):212.
 LI Shou-guo,LI Jun.Design of Data Mining Based Intrusion Detection System[J].,2006,(12):212.

备注/Memo

备注/Memo:
国家自然科学基金项目(10371106 10471114); 江苏省高校自然科学基金项目(04KJB110097 08KJB520023); 南京邮电大学攀登计划项目(NY207064)杨德璋(1984-),男,硕士研究生,研究方向为数据挖掘与计算智能;李雷,教授,研究方向为智能信号处理、非线性分析与计算智能
更新日期/Last Update: 1900-01-01