[1]常新功 李宏.基于近似个体协同的进化子结构发现[J].计算机技术与发展,2010,(09):106-110.
 CHANG Xin-gong,LI Hong.Evolutionary Algorithm for Substructure Discovery Based on Approximate Individual Cooperation[J].,2010,(09):106-110.
点击复制

基于近似个体协同的进化子结构发现()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2010年09期
页码:
106-110
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Evolutionary Algorithm for Substructure Discovery Based on Approximate Individual Cooperation
文章编号:
1673-629X(2010)09-0106-05
作者:
常新功1 李宏2
[1]山西财经大学信息管理学院[2]山西省电子产品检验所
Author(s):
CHANG Xin-gongLI Hong
[1]Faculty of Information & Management,Shanxi University of Finance& Economics[2]Shanxi Province Electronic Products Inspection Institute
关键词:
进化算法协同图数据挖掘子结构发现近似图匹配
Keywords:
evolutionary algorithms cooperation graph-based data mining substructure discovery approximate graph matching
分类号:
TP301.6
文献标志码:
A
摘要:
SUBDUE是一个主流的图数据挖掘算法。为克服其贪婪式查找易陷入局部极值的问题,将进化算法与爬山算法相结合并引入图数据挖掘,较好地权衡了算法的探查和利用能力。另外,针对图数据挖掘中普遍存在的实例易丢失的问题,采用了个体协同的查找方法,该方法与常见的种群间协同进化算法不同,可以使同一种群中的个体进行协同查找,重新找回丢失的实例。同时,还给出了一种具有多项式时间复杂度的近似图匹配算法以改善个体间协同的性能。实验结果表明,以上措施增强了算法的执行效率及寻优能力,能够获得更优的解
Abstract:
SUBDUE is a representative graph-based data mining algorithm.To overcome the limit that the greedy search adopted by SUBDUE may often give sub-optimal solutions,a hybrid evolutionary algorithm,which balances the exploration and exploitation of search by combining the hill-climbing and EA,is developed to perform data mining on graphical databases.In addition,during the searching process,losing instances is common and vital to the algorithm performance.To address this issue,adopt the individual cooperation strategy which is greatly different from the common cooperatively evolutionary approach based on population cooperation.The new strategy enables individuals in the same population to search in a cooperative way and gets back the lost instances.At the same time,an approximate graph matching algorithm with polynomial time complexity is also proposed to improve the performance of the process of individual cooperation.Experimental results show that these measures successfully improve the efficiency and the searching capability of the algorithm and can get better results

相似文献/References:

[1]樊玮 朱贺.软件结构化测试用例自动生成方法[J].计算机技术与发展,2010,(05):26.
 FAN Wei,ZHU He.Summary of Method for Software Structured Testing Case Automatic Generation[J].,2010,(09):26.
[2]廖锋 高兴宝.差分演化算法在约束优化问题中的应用[J].计算机技术与发展,2010,(05):187.
 LIAO Feng,GAO Xing-bao.Application of Differential Evolution Algorithms on Constraint Optimization Problems[J].,2010,(09):187.
[3]莫永新 孙红兵.基于Multi-agent技术的电子政务系统设计[J].计算机技术与发展,2009,(10):200.
 MO Yong-xin,SUN Hong-bing.E- government System Development Based on Multi - agent Technology[J].,2009,(09):200.
[4]张创业 莫愿斌 何登旭.二群协同的人工鱼群优化算法[J].计算机技术与发展,2009,(11):38.
 ZHANG Chuang-ye,MO Yuan-bin,HE Deng-xu.Two Swarms Cooperative Artificial Fish- Swarm Optimization Algorithm[J].,2009,(09):38.
[5]陈玲 严南南.基于多Agent和进化算法的作业线调度研究[J].计算机技术与发展,2009,(11):210.
 CHEN Ling,YAN Nan-nan.Crane Scheduling Research Based on Multi- Agent and Evolutionary Algorithms[J].,2009,(09):210.
[6]崔洪刚 许霞.基于SOA的虚拟学习社区协同系统[J].计算机技术与发展,2009,(12):193.
 CUI Hong-gang,XU Xia.Virtual Learning Community Collaborative Systems Based on SOA[J].,2009,(09):193.
[7]周国亮 刘希玉.一种基于进化算法的BP神经网络优化方法及应用[J].计算机技术与发展,2007,(08):58.
 ZHOU Guo-liang,LIU Xi-yu.A Method of BP NN Optimization Based on Evolution Algorithm and Its Application[J].,2007,(09):58.
[8]许宏图 赵政.基于JBPM的协同软件的研究[J].计算机技术与发展,2006,(08):16.
 XU Hong-tu,ZHAO Zheng.Research on Collaboration Software Based on JBPM[J].,2006,(09):16.
[9]李艳丽 王晓军.分布式系统测试方法的研究和应用[J].计算机技术与发展,2011,(03):205.
 LI Yan-li,WANG Xiao-jun.Research on Distributed System Testing Method and Its Application[J].,2011,(09):205.
[10]胡先浪 张培培.基于调试代理的远程协同调试模型[J].计算机技术与发展,2011,(05):29.
 HU Xian-lang,ZHANG Pei-pei.Remote Collaborative Debugging Model Based on Debugging Agent[J].,2011,(09):29.

备注/Memo

备注/Memo:
山西省自然科学基金项目(2010011022-1); 山西省高校科技研究开发项目(20081023)常新功(1968-),男,山西太原人,CCF会员,教授,博士,研究方向为进化计算、数据挖掘
更新日期/Last Update: 1900-01-01