[1]王超 倪志伟 朱小虎.基于Squeezer算法的数据流离群数据挖掘算法[J].计算机技术与发展,2008,(01):87-89.
 WANG Chao,NI Zhi-wei,ZHU Xiao-hu.A Data Stream Outliers Detection Algorithm Based on Squeezer Cluster Algorithm[J].,2008,(01):87-89.
点击复制

基于Squeezer算法的数据流离群数据挖掘算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2008年01期
页码:
87-89
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
A Data Stream Outliers Detection Algorithm Based on Squeezer Cluster Algorithm
文章编号:
1673-629X(2008)01-0087-03
作者:
王超 倪志伟 朱小虎
合肥工业大学
Author(s):
WANG ChaoNI Zhi-weiZHU Xiao-hu
Hefei University of Technology
关键词:
数据挖掘数据流离群数据质心Squeezer聚类算法
Keywords:
data miningdata stream outliers centroidSqueezer cluster algorithm
分类号:
TP301.6
文献标志码:
A
摘要:
由于数据流数据的动态性、时序性和数据量大等特点使得数据流上的数据挖掘变得更加困难和富有挑战。通过对Squeezer聚类算法的研究分析,并基于此算法提出了一种新的基于聚类的数据流离群数据检测算法O-Squeezer。把数据流看成一个随时间变化的过程,并将其分成许多数据分区,在每个数据块内用改进的O-Squeezer算法挖掘离群数据。理论分析和实验表明,算法可以有效发现数据流中的局部离群数据,算法是可行的
Abstract:
It is difficult to mine and analyse data streams, because data streams are dynamic, time sequence, have large amount of data. Based on Squeezer cluster algorithm, proposes a new algorithm O- Squeezer to mine ontliers. Data streams will be divided into a l

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(01):120.
[2]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(01):143.
[3]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(01):235.
[4]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(01):114.
[5]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(01):229.
[6]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(01):93.
[7]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(01):105.
[8]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(01):84.
[9]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(01):109.
[10]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(01):113.

备注/Memo

备注/Memo:
国家自然科学基金项目(70631003);安徽省教育厅科研项目(2006sk010)王超(1983-),男,安徽蚌埠人,硕士研究生,从事人工智能研究;倪志伟,教授,博士生导师,研究方向为管理信息化.决策科学与技术、软件工程
更新日期/Last Update: 1900-01-01