[1]付强 陈焕文.中国象棋人机对弈的自学习方法研究[J].计算机技术与发展,2007,(12):76-79.
 FU Qiang,CHEN Huan-wen.Research on Methods of Self- Teaching of Chinese Chess Game[J].,2007,(12):76-79.
点击复制

中国象棋人机对弈的自学习方法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2007年12期
页码:
76-79
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Research on Methods of Self- Teaching of Chinese Chess Game
文章编号:
1673-629X(2007)12-0076-04
作者:
付强 陈焕文
长沙理工大学计算机与通信工程学院
Author(s):
FU Qiang CHEN Huan-wen
Computer and Communication Eng., Changsha Univ. of Sci. and Techn
关键词:
中国象棋激励学习神经网络瞬时差分博弈
Keywords:
Chinese chess reinforcement learning neural network temporal difference game
分类号:
TP181
文献标志码:
A
摘要:
机器博弈被认为是人工智能领域最具挑战性的研究方向之一。中国象棋计算机博弈的难度绝不亚于国际象棋,但是涉足学者太少,具有自学习能力的就更少了。介绍了中国象棋人机对弈原理,给出了近年来几类典型的评估函数学习方法及其原理,通过比较得出了最适合中国象棋使用的学习方法。分析了这些方法尚存在的问题,并提出了未来研究方向
Abstract:
Computer game is one of the most challenging topics in the field of artificial intelligence. Chinese chess computer game is more complex than chess computer game, and the fewer researchers and the fewest research have the ability of self- teaching in this field. The brief principle of Chinese chess computer game is introduced. The methods of self - teaching of evaluation function in the last few years are presented, as well as get the self- teaching method that fit in with Chinese chess computer game. The general problems with these methods, and promising avenues for future research are discussed

相似文献/References:

[1]唐中勇 付强 卓佳 陈焕文.一类基于启发式搜索的激励学习算法[J].计算机技术与发展,2006,(08):41.
 TANG Zhong-yong,FU Qiang,ZHUO Jia,et al.A Class of Reinforcement Learning Algorithm Based on Heuristic Search[J].,2006,(12):41.

备注/Memo

备注/Memo:
国家自然科学基金(60075019)付强(1978-),男(回族)。河南杞县人,硕士,助教。研究方向为人工智能、激励学习;陈焕文.教授。研究方向为人工智能、脑模型
更新日期/Last Update: 1900-01-01