[1]郭红波 周明全 耿国华 王小凤.粗糙集理论分析及其在农业数据中的应用[J].计算机技术与发展,2007,(10):165-167.
 GUO Hong-bo,ZHOU Ming-quan,GENG Guo-hua,et al.Rough Set Theory Analysis and Its Application in Agricultural Field[J].,2007,(10):165-167.
点击复制

粗糙集理论分析及其在农业数据中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2007年10期
页码:
165-167
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Rough Set Theory Analysis and Its Application in Agricultural Field
文章编号:
1673-629X(2007)10-0165-03
作者:
郭红波1 周明全12 耿国华1 王小凤1
[1]西北大学信息科学与技术学院[2]北京师范大学信息学院
Author(s):
GUO Hong-bo ZHOU Ming-quan GENG Guo-hua WANG Xiao-feng
[1]School of Information Science and Technology in Northwest University[2]School of Information, Beijing Normal University
关键词:
粗糙集信息量属性约简值约简
Keywords:
rough set theory information quantity reduction of attribute value reduction
分类号:
TP391.4
文献标志码:
A
摘要:
从数据库中挖掘有用信息,将难理解的纯数据变为容易利用的规则,从而为以后的决策提供依据。以粗糙集理论和规则提取算法为基础,将基于信息量的粗糙集属性约简算法和规则提取算法集成起来提出一种集成算法,应用粗糙集约简掉冗余属性,然后利用规则提取算法得出有效规则。将此集成算法应用于农业领域,得出规则,并且效果良好,理论分析和应用都表明了本算法的有效性和实用性。此集成算法可以应用于各种大型数据库中,从中得出有效规则,让历史数据为以后的决策服务
Abstract:
To dig useful information from database, and get the easy using rules from difficult understand pure data, then offer future decision information according to the rules obtained in the system. Based on the rough set theory and rules extraction algorithm, an integrated algorithm is proposed. Using rough set theory the redundant attribute can be reduced, and then the efficient rules are obtained according to the rules extraction algorithm. The data in agricultural fields is analyzed by this algorithm and effective rules are obtained. The analysis in theory and the applications show that it is not only effective but alto feasible. The algorithm can be widely used in all kinds of large databases, from which the effective rules can be obtained. Then the history's data can serve the future decision- making

相似文献/References:

[1]夏奇思 王汝传.基于属性约简的粗糙集海量数据分割算法研究[J].计算机技术与发展,2010,(04):5.
 XIA Qi-si,WANG Ru-chuan.Mass Data Partition for Rough Set on Attribute Reduction Algorithm[J].,2010,(10):5.
[2]张政超 关欣[] 何友 李应升 郭伟峰.粗糙集理论数据处理方法及其研究[J].计算机技术与发展,2010,(04):12.
 ZHANG Zheng-chao,GUAN Xin[],HE You,et al.Rough Sets Data Processing Method and Its Research[J].,2010,(10):12.
[3]杨乐婵 邓松 徐建辉.基于BP网络的洪灾风险评价算法[J].计算机技术与发展,2010,(04):232.
 YANG Le-chan,DENG Song,XU Jian-hui.Flood Risk Evaluation Algorithm on BP Net[J].,2010,(10):232.
[4]张学友 苗强 毛军军.基于粗糙度的一种分形维数计算方法[J].计算机技术与发展,2010,(05):136.
 ZHANG Xue-you,MIAO Qiang,MAO Jun-jun.A Calculation Method of Fractal Dimension Based on Roughness[J].,2010,(10):136.
[5]王伟 高亮 吴涛.粗糙集在经济分析中的应用[J].计算机技术与发展,2008,(04):158.
 WANG Wei,GAO Liang,WU Tao.Application of Rough Set in Economic Analysis[J].,2008,(10):158.
[6]徐沈 吴涛[] 李国成.产业结构调整的量化分析[J].计算机技术与发展,2009,(08):178.
 XU Shen,WU Tao,LI Guo-cheng.Quantitative Analysis on Adjustment of Industrial Structure[J].,2009,(10):178.
[7]申锦标 吕跃进.粗糙集的近似约简及其算法[J].计算机技术与发展,2009,(12):17.
 SHEN Jin-biao,LU Yue-jin.A Rough Set of Approximate Attribute Reduction and Its Algorithm[J].,2009,(10):17.
[8]王小菊 蒋芸 李永华.基于依赖度之差的属性重要性评分[J].计算机技术与发展,2009,(01):67.
 WANG Xiao-ju,JIANG Yun,LI Yong-hua.Significance of Attribute Evaluation Based on Dependable Difference[J].,2009,(10):67.
[9]汪小燕 杨思春.基于改进的二进制可辨矩阵的核增量式更新方法[J].计算机技术与发展,2009,(01):97.
 WANG Xiao-yan,YANG Si-chun.An Incremental Updating Approach to Compute a Core Based on Improved Binary Discernable Matrix[J].,2009,(10):97.
[10]单雪红 吴涛[] 徐文婷[].基于粗糙集的石油安全预警规则提取[J].计算机技术与发展,2009,(01):251.
 SHAN Xue-hong,WU Tao[],XU Wen-ting[].Rules Set of China Oil Security Early Warning Based on Rough Set[J].,2009,(10):251.
[11]李学文 王小刚.优势信息系统的属性约简算法[J].计算机技术与发展,2009,(08):107.
 LI Xue-wen,WANG Xiao-gang.Algorithm on Attribute Reduction in Dominance Information System Based on Dominance Relation[J].,2009,(10):107.
[12]覃伟荣 秦亮曦.基于粗糙集理论的条件属性动态约简算法[J].计算机技术与发展,2008,(08):23.
 QIN Wei-rong,QIN Liang-xi.An Algorithm of Condition Attribute Dynamic Reduct Based on Rough Set[J].,2008,(10):23.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(60372072);中国博士后科学基金资助项目(2003033519)郭红波(1978-),男,陕西人,硕士研究生,研究方向为智能挖掘和音频处理等;周明全,教授,博士生导师,研究方向为图形图像处理、数据挖掘等;耿国华,教授,博士生导师,研究方向为智能信息处理、数据库、数据挖掘等
更新日期/Last Update: 1900-01-01