[1]张诚 郑诚.基于时间的模糊关联规则挖掘[J].计算机技术与发展,2007,(07):60-62.
 ZHANG Cheng,ZHENG Cheng.Fuzzy Association Rules Mining over Time[J].,2007,(07):60-62.
点击复制

基于时间的模糊关联规则挖掘()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2007年07期
页码:
60-62
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Fuzzy Association Rules Mining over Time
文章编号:
1673-629X(2007)07-0060-03
作者:
张诚1 郑诚2
[1]安徽大学计算智能与信号处理教育部重点实验室[2]安徽大学计算机科学与技术学院
Author(s):
ZHANG Cheng ZHENG Cheng
[1]Ministry of Edu. Key Lab. of Intelligent Computing & Signal Processing,Anhui University[2]School of Computer Science & Technology, Anhui University
关键词:
数据挖掘时间序列模糊关联规则
Keywords:
data miningtime seriesfuzzy association rules
分类号:
TP311.13
文献标志码:
A
摘要:
关联规则是数据挖掘研究中的一个重要的主题。一些算法都是假设数据中根本的关联基于时间是稳定的。然而,在现实世界领域,数据具有自己的特征,因此关联随着时间发生巨大的改变。现有的数据挖掘算法没有考虑关联的改变,这导致了严重的性能下降,特别是挖掘出的关联规则被用来分类和预测。尽管关联改变的挖掘是一个重要的问题,因为需要基于过去的历史数据来预测未来,现有的数据挖掘算法不符合这样的工作。文中引入模糊数据挖掘算法来发现基于时间的关联规则的改变。基于挖掘出的模糊规则,能预测关联规则在未来如何改变。实验表明了算法的有效性
Abstract:
Association rule mining is an important topic in data mining research. Many algorithms have been developed for such task an they typically assume that the underlying associations hidden in the data are stable over time. However, in real world domains, it is possible that the data characteristics and hence the associations change significantly over time. Existing data mining algorithms have not taken the changes in associations into consideration and this can result in sever degradation of performance, especially when the discovered association rules are used for classification(prediction). Although the mining of changes in association is an important problem because it is common that we need to predict the future based on the historical data in the past, existing data mining algorithms are not developed for this task. In this paper, introduce a new fuzzy data mining technique to diseover changes in association rules over time

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(07):120.
[2]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(07):143.
[3]吉同路 柏永飞 王立松.住宅与房地产电子政务中数据挖掘的应用研究[J].计算机技术与发展,2010,(01):235.
 JI Tong-lu,BAI Yong-fei,WANG Li-song.Study and Application of Data Mining in E-government of House and Real Estate Industry[J].,2010,(07):235.
[4]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(07):114.
[5]赵裕啸 倪志伟 王园园 伍章俊.SQL Server 2005数据挖掘技术在证券客户忠诚度的应用[J].计算机技术与发展,2010,(02):229.
 ZHAO Yu-xiao,NI Zhi-wei,WANG Yuan-yuan,et al.Application of Data Mining Technology of SQL Server 2005 in Customer Loyalty Model in Securities Industry[J].,2010,(07):229.
[6]张笑达 徐立臻.一种改进的基于矩阵的频繁项集挖掘算法[J].计算机技术与发展,2010,(04):93.
 ZHANG Xiao-da,XU Li-zhen.An Advanced Frequent Itemsets Mining Algorithm Based on Matrix[J].,2010,(07):93.
[7]王爱平 王占凤 陶嗣干 燕飞飞.数据挖掘中常用关联规则挖掘算法[J].计算机技术与发展,2010,(04):105.
 WANG Ai-ping,WANG Zhan-feng,TAO Si-gan,et al.Common Algorithms of Association Rules Mining in Data Mining[J].,2010,(07):105.
[8]张广路 雷景生 吴兴惠.一种改进的Apriori关联规则挖掘算法(英文)[J].计算机技术与发展,2010,(06):84.
 ZHANG Guang-lu,LEI Jing-sheng,WU Xing-hui.An Improved Apriori Algorithm for Mining Association Rules[J].,2010,(07):84.
[9]吴楠 胡学钢.基于聚类分区的序列模式挖掘算法研究[J].计算机技术与发展,2010,(06):109.
 WU Nan,HU Xue-gang.Research on Clustering Partition-Based Approach of Sequential Pattern Mining[J].,2010,(07):109.
[10]吴青 傅秀芬.水平分布数据库的正负关联规则挖掘[J].计算机技术与发展,2010,(06):113.
 WU Qing,FU Xiu-fen.Positive and Negative Association Rules Mining on Horizontally Partitioned Database[J].,2010,(07):113.
[11]张军 马志民.基于时间序列的相似子模式发现算法[J].计算机技术与发展,2006,(01):140.
 ZHANG Jun,MA Zhi-min.An Algorithm of Finding Similar Subpattern Based on Time Series[J].,2006,(07):140.
[12]周森鑫 盛鹏飞 王夫芹.数据挖掘课程案例教学研究[J].计算机技术与发展,2012,(11):183.
 ZHOU Sen-xin,SHENG Peng-fei,WANG Fu-qin.Research on Case Teaching Method for Data Mining Course[J].,2012,(07):183.
[13]陈运文,吴飞,吴庐山,等. 基于异常检测的时间序列研究[J].计算机技术与发展,2015,25(04):166.
 CHEN Yun-wen,WU Fei,WU Lu-shan,et al. Research on Time Series Based on Anomaly Detection[J].,2015,25(07):166.

备注/Memo

备注/Memo:
安徽省高校自然科学研究项目(2006KJ055B)张诚(1980-),男,安徽潜山人,硕士研究生,研究方向为网络下数据库与数据挖掘;郑诚,博士,副教授,研究方向为网络下数据库与数据挖掘
更新日期/Last Update: 1900-01-01