[1]苏守宝 汪继文 方杰.粒子群优化技术的研究与应用进展[J].计算机技术与发展,2007,(05):249-253.
 SU Shou-bao,WANG Ji-wen,et al.Overview Applications and Research on Particle Swarm Optimization Algorithm[J].,2007,(05):249-253.
点击复制

粒子群优化技术的研究与应用进展()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2007年05期
页码:
249-253
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Overview Applications and Research on Particle Swarm Optimization Algorithm
文章编号:
1673-629X(2007)05-0249-05
作者:
苏守宝12 汪继文1 方杰12
[1]安徽大学计算机科学与技术学院[2]皖西学院计算机科学与技术系
Author(s):
SU Shou-baoWANG Ji-wen FANG Jie
[1]School of Computer Science & Technology, Anhui University[2]Department of Computer Science& Technology ,West Anhui University
关键词:
粒子群优化群智能演化计算
Keywords:
particle swarm optimization swarm intelligence evolutionary computation
分类号:
TP18 TP301.6
文献标志码:
A
摘要:
粒子群优化(PSO)算法是一种新兴的基于群智能搜索的优化技术,它是通过粒子追随个体最优解和群体最优解来完成优化,且算法简单、易实现、参数少,具有较强的全局优化能力,可有效应用于科学与工程实践中。文中综述了PSO各种改进技术、研究热点问题及其应用进展情况并指出了PSO的发展趋势及未来研究方向
Abstract:
Particle swarm optimization (PSO) is a new optimization technique based on swarm intelligent search that completes the optimization through following the personal best solution of each particle and the global best value of the whole swarm. PSO with better global optimization capability can be easily implemented with simple algorithm and few parameters need. It has been successfully applied in science and engineering practice. In this paper, the basic principles of PSO and its various improved algorithms are introduced at length, research hot issues and the application fields are analyzed and some future research directions about PSO are discussed

相似文献/References:

[1]邓义乔 张代远.蚁群算法在搜索引擎系统中的应用研究[J].计算机技术与发展,2009,(12):21.
 DENG Yi-qiao,ZHANG Dai-yuan.Research and Application of Ant Colony Algorithm in Searching Engine System[J].,2009,(05):21.
[2]崔海青 刘希玉.基于粒子群算法的RBF网络参数优化算法[J].计算机技术与发展,2009,(12):117.
 CUI Hai-qing,LIU Xi-yu.Parameter Optimization Algorithm of RBF Neural Network Based on PSO Algorithm[J].,2009,(05):117.
[3]陆克中 吴璞 王汝传.基于粒子群优化算法的非线性系统模型参数估计[J].计算机技术与发展,2008,(06):57.
 LU Ke-zhong,WU Pu,WANG Ru-chuan.A Method of Parameter Estimation in a Nonlinear System Model Based on Particle Swarm Optimization[J].,2008,(05):57.
[4]赵传信 张雪东 季一木[].改进的粒子群算法在VRP中的应用[J].计算机技术与发展,2008,(06):240.
 ZHAO Chuan-xin,ZHANG Xue-dong,JI Yi-mu.Application of Improved Particle Swarm Optimization in VRP[J].,2008,(05):240.
[5]陆克中 方康年.PSO算法在非线性回归模型参数估计中的应用[J].计算机技术与发展,2008,(12):134.
 LU Ke-zhong,FANG Kang-nian.Application of PSO Algorithm in Parameter Estimation of Nonlinear Regression Models[J].,2008,(05):134.
[6]陆克中 张秋华 孙兰娟.一种改进的粒子群优化算法及其仿真[J].计算机技术与发展,2007,(11):88.
 LU Ke-zhong,ZHANG Qiu-hua,SUN Lan-juan.An Improved Particle Swarm Optimization and Simulation[J].,2007,(05):88.
[7]方峻 唐普英 任诚.一种基于加权有向拓扑的改进粒子群算法[J].计算机技术与发展,2006,(08):62.
 FANG Jun,TANG Pu-ying,REN Cheng.A Modified Particle Swarm Optimization Based on Directional Weighting Topology[J].,2006,(05):62.
[8]张璐 张国良 张维平 敬斌.基于粒子群三次样条优化的局部路径规划方法[J].计算机技术与发展,2012,(11):145.
 ZHANG Lu,ZHANG Guo-liang,ZHANG Wei-ping,et al.Local Path Planning Algorithm Based on Particle Swarm Optimization of Cubic Splines[J].,2012,(05):145.
[9]张奇 黄卫东.构建基于PSO—BP网络的电信客户信用度评估模型[J].计算机技术与发展,2012,(12):146.
 ZHANG Qi,HUANG Wei-dong.Construction of Credit Evaluation Model for Telecommunication Clients Based on PSO-BP Neural Network[J].,2012,(05):146.
[10]宋发兴,高留洋,刘东升,等.基于粒子群优化的BP神经网络图像复原方法[J].计算机技术与发展,2014,24(06):149.
 SONG Fa-xing,GAO Liu-yang,LIU Dong-sheng,et al.A Method of Image Restoration Based on Particle Swarm Optimization for BP Neural Network[J].,2014,24(05):149.

备注/Memo

备注/Memo:
安徽高校省级自然科学研究重点资助项目(KJ2007A087);安徽高校省级自然科学研究资助项目(2006KJ046B,2005KJ095)苏守宝(1965-),男,安徽六安人,博士研究生,副教授,研究方向为智能计算、软件工程、CAPP等;汪继文,博士,教授,博士生导师,研究方向为智能计算
更新日期/Last Update: 1900-01-01