[1]孟芝佳 马孝翔 李国辉[] 董逸生.基于人工神经网络的混凝土碳化深度研究[J].计算机技术与发展,2006,(11):231-233.
 MENG Zhi-jia,MA Xiao-xiang,LI Guo-hui,et al.Research on Carbonation of Concrete Based on Artificial Neural Network[J].,2006,(11):231-233.
点击复制

基于人工神经网络的混凝土碳化深度研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2006年11期
页码:
231-233
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
Research on Carbonation of Concrete Based on Artificial Neural Network
文章编号:
1673-629X(2006)11-0231-03
作者:
孟芝佳1 马孝翔2 李国辉[3] 董逸生1
[1]东南大学计算机科学与工程系[2]温州市质检站监测中心[3]中铁一局集团第五工程有限公司
Author(s):
MENG Zhi-jia MA Xiao-xiang LI Guo-hui
[1]Department of Computer Science and Engineering, Southeast University[2]Monitoring Center of Quality Testing of Wenzhou[3]The Fifth Engineering Co. , Ltd. of China Railway First Group
关键词:
神经网络BP算法混凝土碳化
Keywords:
neural network BP algorithm coneretecarbonation
分类号:
TP399
文献标志码:
A
摘要:
介绍了BP神经网络的基本概念与结构.提出了计算和预测混凝土碳化深度的神经网络模型。建立1—3—1单因子(时间)输入向量网络与传统回归分析方法进行比较;建立6—4-1多因子输入向量网络计算及预测混凝土碳化深度。分析结果表明该模型计算和预测精度都能达到工程要求,适合在工程中应用
Abstract:
Introduced the primary concepts and components of BP neural network. A model based on BP neural network is preented to calculate and forceast carbonation depth. Build 1 - 3 - 1 network with single inputs(time) to calculaste carbonation depth, compared with th( result of traditional recur,sire analysis; build 6 - 4 - 1 network with multiple inputs to ealeulate and forecast earbonation depth. It is concluded through analysis that the BP network model has high precision in calculation and forecast and the model is suitable for practical use

相似文献/References:

[1]路川 胡欣杰.区域航空市场航线客流量预测研究[J].计算机技术与发展,2010,(04):84.
 LU Chuan,HU Xin-jie.Analysis of Regional Airline Passenger Forecast Title[J].,2010,(11):84.
[2]高峥 陈蜀宇 李国勇.混合入侵检测系统的研究[J].计算机技术与发展,2010,(06):148.
 GAO Zheng,CHEN Shu-yu,LI Guo-yong.Research of a Hybrid Intrusion Detection System[J].,2010,(11):148.
[3]包力伟 周俊.铸锻企业生产质量控制系统的开发[J].计算机技术与发展,2008,(04):174.
 BAO Li-wei,ZHOU Jun.Development of a Manufacture Quality Control System in Casting Company[J].,2008,(11):174.
[4]李龙澍 葛瑞峰 王慧萍.基于神经网络的批强化学习在Robocup中的应用[J].计算机技术与发展,2009,(07):98.
 LI Long-shu,GE Rui-feng,WANG Hui-ping.Application of Batch Reinforcement Learning Based on NN to Robocup[J].,2009,(11):98.
[5]薛俊 陈行 陶军.一种基于神经网络的入侵检测技术[J].计算机技术与发展,2009,(08):148.
 XUE Jun,CHEN Hang,TAO Jun.Technology of Intrusion Detection Based on Neural Network[J].,2009,(11):148.
[6]贾志先.神经网络在空白试卷识别中的应用[J].计算机技术与发展,2009,(08):208.
 JIA Zhi-xian.Application of Neural Network in Recognization Blank Examination Paper[J].,2009,(11):208.
[7]肖宜龙 路游 亓永刚.基于神经网络的NURBS曲面重建[J].计算机技术与发展,2009,(09):65.
 XIAO Yi-long,LU You,QI Yong-gang.NURBS Surface Reconstruction Based on Neural Network[J].,2009,(11):65.
[8]崔海青 刘希玉.基于粒子群算法的RBF网络参数优化算法[J].计算机技术与发展,2009,(12):117.
 CUI Hai-qing,LIU Xi-yu.Parameter Optimization Algorithm of RBF Neural Network Based on PSO Algorithm[J].,2009,(11):117.
[9]张莉 姜浩 蒲安建.基于广义径向基函数的神经网络分类预测[J].计算机技术与发展,2009,(03):106.
 ZHANG Li,JIANG Hao,PU An-jian.Classification and Prediction of Neural Network Based on Generalized Radial Basis Function[J].,2009,(11):106.
[10]田奕 乔後飞.基于遗传算法的BOD神经网络软测量[J].计算机技术与发展,2009,(03):127.
 TIAN Yi,QIAO Jun-fei.NN Soft-Measuring for BOD Predict Based on GA[J].,2009,(11):127.
[11]李志俊 程家兴 金奎 饶玉佳.基于样本期望训练数的BP神经网络改进研究[J].计算机技术与发展,2009,(05):103.
 LI Zhi-jun,CHENG Jia-xing,JIN Kui,et al.BP Algorithm Improvement Based on Sample Expected Training Number[J].,2009,(11):103.
[12]蔡秋茹 罗烨 柳益君 叶飞跃.企业资信的BP神经网络评估模型研究[J].计算机技术与发展,2009,(10):117.
 CAI Qiu-ru,LUO Ye,LIU Yi-jun,et al.Research on BP Neural Network Model for Corporation Credit Rating[J].,2009,(11):117.
[13]王晓敏 刘希玉 戴芬.BP神经网络预测算法的改进及应用[J].计算机技术与发展,2009,(11):64.
 WANG Xiao-min,LIU Xi-yu,DAI Fen.Improvement and Application of BP Neural Network Forecasting Algorithm[J].,2009,(11):64.
[14]张充 史青宣 苗秀芬 杨芳 田学东.基于BP神经网络的手写体数字识别[J].计算机技术与发展,2008,(06):128.
 ZHANG Chong,SHI Qing-xuan,MIAO Xiu-fen,et al.Handwritten Numeral Recognition Based on BP Neural Network[J].,2008,(11):128.
[15]郭彦伟 王洪国 王鑫 于惠.一种基于并行策略的BP改进算法[J].计算机技术与发展,2008,(10):110.
 GUO Yan-wei,WANG Hong-guo,WANG Xin,et al.An Improved BP Algorithm Based on Parallel[J].,2008,(11):110.
[16]马恋 何锫.基于神经网络的数据压缩研究[J].计算机技术与发展,2007,(02):12.
 MA Lian,HE Pei.Research on NN- Based Data Compression[J].,2007,(11):12.
[17]王辉.基于结构简化的BP网络的多类形状识别[J].计算机技术与发展,2006,(07):13.
 WANG Hui.An Algorithm Research on BP Based on Structure Simplification[J].,2006,(11):13.
[18]张瑞敏 黄梦涛 程青涛.智能神经元网络时间序列预测模型的研究[J].计算机技术与发展,2012,(03):74.
 ZHANG Rui-min,HUANG Meng-tao,CHENG Qing-tao.Application of Dynamic Intelligent Neural Network in Time Series Prediction[J].,2012,(11):74.
[19]张月琴 刘翔 孙先洋.一种改进的BP神经网络算法与应用[J].计算机技术与发展,2012,(08):163.
 ZHANG Yue-qin,LIU Xiang,SUN Xian-yang.An Imporved Algorithm of BP Neural Network and Its Application[J].,2012,(11):163.
[20]张浩,张代远.基于三次样条权函数神经网络的股价预测[J].计算机技术与发展,2014,24(06):28.
 ZHANG Hao[],ZHANG Dai-yuan[].Stock Prediction Based on Neural Networks with Cubic Spline Weight Functions[J].,2014,24(11):28.

备注/Memo

备注/Memo:
孟芝佳(1982-),女,江苏无锡人,硕士研究生,从事计算机应用方向研究;导师:董逸生,教授,博士生导师,主要研究方向为数据库、信息系统与数掘仓库和OLAP等
更新日期/Last Update: 1900-01-01