[1]方峻 唐普英 任诚.一种基于加权有向拓扑的改进粒子群算法[J].计算机技术与发展,2006,(08):62-65.
 FANG Jun,TANG Pu-ying,REN Cheng.A Modified Particle Swarm Optimization Based on Directional Weighting Topology[J].,2006,(08):62-65.
点击复制

一种基于加权有向拓扑的改进粒子群算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2006年08期
页码:
62-65
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
A Modified Particle Swarm Optimization Based on Directional Weighting Topology
文章编号:
1673-629X(2006)08-0062-04
作者:
方峻 唐普英 任诚
电子科技大学光电信息学院
Author(s):
FANG Jun TANG Pu-ying REN Cheng
School of Opto- electronic Information, University of Electronic Science and Technology of China
关键词:
粒子群优化全联通拓扑结构
Keywords:
particle swarm optimization fully informed topological structure
分类号:
TP301.6
文献标志码:
A
摘要:
研究粒子群优化算法(PSO)的拓扑结构和信息流动,以提高算法性能是PSO的一个有意义的研究方向。RuiMendes等人提出的全联通型算法(FIPSO),其拓扑结构本质上是加权无向图,两个邻接点之间的相互影响是对等的,与社会人际网络的真实情况不符。提出了一种改进型算法,重新构造了加权函数,体现了粒子之间影响的不平衡性。仿真结果显示:该改进算法对收敛速度和稳定性均有非常好的改善
Abstract:
It makes sense to search on the PSO from its topology and information flow in order to improve its performance. The FIPSO proposed by Rui Mendes etc. ,whose topology is weighting undirected that influence between two adjacent particles is equivalent,doesn't accord with interpersonal relations in real societal networks. Weighting functions are reconstructed in the paper which realizes asymmetric influence between particles. The simulation results have shown that the performance of modified algorithm is far better, faster and more stabile in convergence

相似文献/References:

[1]崔海青 刘希玉.基于粒子群算法的RBF网络参数优化算法[J].计算机技术与发展,2009,(12):117.
 CUI Hai-qing,LIU Xi-yu.Parameter Optimization Algorithm of RBF Neural Network Based on PSO Algorithm[J].,2009,(08):117.
[2]陆克中 吴璞 王汝传.基于粒子群优化算法的非线性系统模型参数估计[J].计算机技术与发展,2008,(06):57.
 LU Ke-zhong,WU Pu,WANG Ru-chuan.A Method of Parameter Estimation in a Nonlinear System Model Based on Particle Swarm Optimization[J].,2008,(08):57.
[3]赵传信 张雪东 季一木[].改进的粒子群算法在VRP中的应用[J].计算机技术与发展,2008,(06):240.
 ZHAO Chuan-xin,ZHANG Xue-dong,JI Yi-mu.Application of Improved Particle Swarm Optimization in VRP[J].,2008,(08):240.
[4]陆克中 方康年.PSO算法在非线性回归模型参数估计中的应用[J].计算机技术与发展,2008,(12):134.
 LU Ke-zhong,FANG Kang-nian.Application of PSO Algorithm in Parameter Estimation of Nonlinear Regression Models[J].,2008,(08):134.
[5]苏守宝 汪继文 方杰.粒子群优化技术的研究与应用进展[J].计算机技术与发展,2007,(05):249.
 SU Shou-bao,WANG Ji-wen,et al.Overview Applications and Research on Particle Swarm Optimization Algorithm[J].,2007,(08):249.
[6]陆克中 张秋华 孙兰娟.一种改进的粒子群优化算法及其仿真[J].计算机技术与发展,2007,(11):88.
 LU Ke-zhong,ZHANG Qiu-hua,SUN Lan-juan.An Improved Particle Swarm Optimization and Simulation[J].,2007,(08):88.
[7]张璐 张国良 张维平 敬斌.基于粒子群三次样条优化的局部路径规划方法[J].计算机技术与发展,2012,(11):145.
 ZHANG Lu,ZHANG Guo-liang,ZHANG Wei-ping,et al.Local Path Planning Algorithm Based on Particle Swarm Optimization of Cubic Splines[J].,2012,(08):145.
[8]张奇 黄卫东.构建基于PSO—BP网络的电信客户信用度评估模型[J].计算机技术与发展,2012,(12):146.
 ZHANG Qi,HUANG Wei-dong.Construction of Credit Evaluation Model for Telecommunication Clients Based on PSO-BP Neural Network[J].,2012,(08):146.
[9]宋发兴,高留洋,刘东升,等.基于粒子群优化的BP神经网络图像复原方法[J].计算机技术与发展,2014,24(06):149.
 SONG Fa-xing,GAO Liu-yang,LIU Dong-sheng,et al.A Method of Image Restoration Based on Particle Swarm Optimization for BP Neural Network[J].,2014,24(08):149.
[10]李荣龙,罗杰. 一种改进的粒子群优化算法[J].计算机技术与发展,2015,25(07):57.
 LI Rong-long,LUO Jie. An Improved Particle Swarm Optimization Algorithm[J].,2015,25(08):57.

备注/Memo

备注/Memo:
方峻(1981-),男,四川宜宾人,硕士研究生,研究方向为进化计算 x 唐普英,博士,副教授,研究方向为计算智能
更新日期/Last Update: 1900-01-01