[1]程泽凯 秦锋 徐浩.TANC—BIC结构学习算法的改进[J].计算机技术与发展,2006,(05):44-46.
 CHENG Ze-kai,QIN Feng,XU Hao.Improvement for TANC- BIC Structure Learning Algorithm[J].,2006,(05):44-46.
点击复制

TANC—BIC结构学习算法的改进()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2006年05期
页码:
44-46
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Improvement for TANC- BIC Structure Learning Algorithm
文章编号:
1673-629X(2006)05-0044-03
作者:
程泽凯 秦锋 徐浩
安徽工业大学计算机学院
Author(s):
CHENG Ze-kai QIN Feng XU Hao
School of Computer Science, Anhui University of Technology
关键词:
树扩展朴素贝叶斯分类器贝叶斯信息标准测度结构学习数据采掘
Keywords:
TANC BIC structure - learning data mining
分类号:
TP301.6
文献标志码:
A
摘要:
基于概率的贝叶斯分类器以其简单的结构和良好的性能受到重视,树扩展朴素贝叶斯分类器TANC应用较广。用TANC—BIC结构学习算法构建的分类器取得了成功,但TANC—BIC结构学习算法未考虑类节点的情况。文中提出了一种新的结构学习TANC—CBIC算法。并在贝叶斯分类器实验平台MBNC上编程实现。实验结果表明,改进算法分类准确率要高于由TANC—BIC和TANC-CMI结构学习算法构建的分类器,TANC—CBIC结构学习算法是有效的
Abstract:
Bayesian classifier based on probability theory has gained great attention ,because of its simple structure and good performance. TANC applies widely in practice. The classifier which was set up by the TANC- BIC structure- learning algorithm bad acquired success, but it didn't consider the class node. This paper suggests a new structure - learning algorithm called TANC - CBIC, makes experiment in MBNC experiment platform with programming TANC- CBIC algorithm. The results show that the accuracy of improver is better than algorithm based onTANC- BIC and TANC - CMI. The new structure - learning algorithm is effective

相似文献/References:

[1]蒋望东 林士敏 鲁明羽.基于BIC测度和遗传算法的TANC结构学习[J].计算机技术与发展,2007,(04):96.
 JIANG Wang-dong,LIN Shi-min,LU Ming-yu.Structure Learning of TANC Based on BIC and Genetic Algorithms[J].,2007,(05):96.

备注/Memo

备注/Memo:
安徽省高等学校青年教师资助项目(2005JQ1079)程泽凯(1975-),男,安徽马鞍山人,讲师,硕士,研究方向为人工智能、数据挖掘、机器学习;秦锋,教授,研究方向为人工智能、数据挖掘、机器学习
更新日期/Last Update: 1900-01-01